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ABSTRACT: We propose a new computational approach for
predicting the impact of point mutations on residual enzymatic
activities. We build on the general linear trends existing
between free energy and enthalpy of transfer of substrates
from cytosol to enzyme active sites (protein−ligand binding),
therefore linking the docking energies to the binding free
energies. In this very first step, we rationalize these trends in
terms of a compensation effect decomposed into explicit
thermodynamics contributions. In a second step, we combine
the latter with the assumption that free energies of transfer,
estimated from docking, and free energies of activation are linearly related through a Brönsted−Evans−Polanyi (BEP)
relationship, allowing us in fine to predict enzyme activity. As a result, we propose generic Langmuir−Hinshelwood kinetic
equations “trained” on the wild type, which provide excellent predictions of rates of catalytic transformations for mutated
enzymes from the combination of in silico docking energies to a set of system-specific experimental data. This generalized
approach is validated against clinical data on the particular case of human fumarase with major implications for the understanding
of hereditary fumarase deficiency.

KEYWORDS: enthalpy−entropy compensation, protein−ligand binding, impact of mutations on enzyme activity,
linear free energy relationship, molecular simulation, BEP relationship, Langmuir−Hinshelwood kinetics,
competitive Michaelis−Menten kinetics

■ INTRODUCTION

A long-standing goal in biochemistry is the prediction of the
thermodynamics of protein−ligand complexes, fuelled by the
incentives of structure-based drug design. The availability of
ever more high-resolution structural data for functional proteins
is currently strongly stimulating efforts to provide insights on
enzymatic mechanisms at the molecular scale on the basis of
biomolecular simulation studies. There are huge stakes for
advances in basic life science and applications in medicine,
biotechnologies, or biomimetic chemistry. From the standpoint
of physical chemistry, the common challenge is our ability to
describe accurately the most likely reaction pathway connecting
reactants and products via an enzymatic catalytic “living” site,
that is, the pathway with the minimal Gibbs free energy profile.
Metabolites undergoing enzymatic transformations in vivo
experience complex molecular environments along such a
pathway, being transferred typically from an aqueous cytosol to
a “site”, or specific functional pocket of a protein, evolutionarily
determined and encoded in both a relevant sequence of amino
acids and the constraints of primary to quaternary spatial
structures. Currently, the protein folding problem cannot be

solved computationally; however, combining the knowledge of
relevant aminoacid sequences, experimental high-resolution
XRD and NMR 3D structural data for the relevant proteins,
and a reasonable representation of the cytoplasmic solution, it
is possible to build in silico atomistic models trying to catch the
essential features of inter- and intramolecular interactions at
play in the dynamical processes of enzymatic transfers and
reactions.
It is important to underline here that one key issue in

enzymatic catalysis is the ability of current computational
approaches to provide quantitative routes for calculating rate
constants of a given reaction using the knowledge of the
enzyme crystal structure.1 An ongoing challenge lies in the
development of validated methods for evaluating activation free
energies. To that end, the most sophisticated and computa-
tionally intensive approach to date involves transition path
sampling techniques2−7 based on DFT-based first-principles
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molecular dynamics simulations.8 Both to allow calculations
with larger atomistic models and in view of the known
limitations of the usual exchange-correlation functionals to
account for dispersion energy expected of great significance in
this context, hybrid QM/MM schemes are among the best
compromises between accuracy and tractability.9 A number of
recent studies including empirical valence bond10−12 or QM/
MM methods13 have demonstrated the capability of
quantitative approaches to predict the effect of mutations on
enzyme catalysis.
Another extensively used approach consists in computational

(or in silico) docking techniques. These have been developed
mostly for the purpose of medicinal chemistry, following the
empirical concept that drugs generally act as inhibitors or
competitors of natural metabolites for specific enzymatic sites.
Since the transfer of substrates between cytosols and enzyme
sites is driven mostly by electrostatic and nonbinding
interactions, empirical forcefields have been expected to achieve
successful prediction of relative Michaelis constants for
homologous series14−17 and, therefore, to be useful in the
search for new “leads” and optimal analogues. Docking energies
are, however, at best “proxies” for enthalpies of transfer, and
Michaelis constants actually reflect free energies of transfer. To
correlate docking results and experimental Michaelis constants
into useful quantitative structure property relationships, a large
number of “scoring functions” have been proposed in the
literature,18,19 with a more or less rational background and
diverse success. In that tremendously active context, we
propose a novel computational approach for predicting the
impact of point mutations on residual enzymatic catalytic
activities.
In a first step, we build on the general linear trends existing

between free energy and enthalpy of complexation upon
transfer of substrates from cytosol to enzyme active sites and
rationalize these trends in terms of the so-called entropy−
enthalpy compensation effect.20−26 This effect is clearly to be
distinguished from the so-called “constable effect” in hetero-
geneous catalysis, also called “compensation effect” by some
authors in the latter field, which denotes the observation of a
linear relationship between the apparent energy of activation
and the apparent prefactor of the Arrhenian rate equation for a
series of related catalysts, tested under the same operating
conditions (for recent discussions and explanations, see refs 27
and 28). We build on recent isothermal titration calorimetric
measurements that report such a linear correlation between the
free energy of transfer of a series of substrates to protein hosts
and their enthalpy of transfer. The isothermal titration
calorimetry (ITC) technique29 was, indeed, instrumental in
the systematic collection of such data in vitro for numerous
protein−ligand systems with a couple of public databases, such
as BindingDB and SCORPIO available online.30,31 Importantly,
we propose here to detail the enthalpic and entropic
contributions to the transfer into explicit terms, taking into
account the desolvation effect and including terms accessible
from in silico docking protocols. By separating generic and
protein specific contributions, we thus develop an interpreta-
tion of the entropy−enthalpy compensation effect.
In a second step, we combine the above rationale with the

assumption that free energies of transfer (as estimated from
docking) and free energies of activation are linearly related
through a Brönsted−Evans−Polanyi (BEP) relationship,32,33

equivalent in heterogeneous catalysis to the linear free energy
relationship (LFER) widely used in protein−ligand complex-

ation. They both offer empirical routes to estimate kinetic
parameters from thermodynamic values. BEP relationships have
found broad application in heterogeneous catalysis34 and were
successfully documented for more and more diverse systems,
thanks to the combination of experimental and DFT studies;35

however, their use in enzymatic catalysis has been only recently
considered.36 We demonstrate here that the Brönsted−Evans−
Polanyi relationship may be transposed from the field of
heterogeneous catalysis to the study of mutated protein−ligand
systems, that is, that free energies of activation may be
correlated for a given reaction catalyzed by mutated variants of
a given protein, with the free energy difference between
reactant and product in complexes themselves correlated to
docking energies in mutated enzymes in a systematic and
consistent way.
Finally, relying on the transition state theory together with

the well accepted Michaelis−Menten kinetic equations (rather
than the Michaelis−Menten formalism, we use their more
general expressions known as the Langmuir−Hinshelwood
equations in the context of heterogeneous catalysis37), we are
then in a position to predict enzymatic activities on the sole
basis of in silico docking studies. As a result, we propose generic
kinetic equations “trained” on the wild type enzyme, which
provide further excellent predictions of rates of catalytic
transformations for mutated enzymes from the sole input of
in silico docking energies.
We test our model in the complex case of point mutations

affecting the function of human fumarase in the stereospecific,
reversible hydration of fumarate into L-malate, participating in
the Krebs cycle within mitochondria, and in the regulation of
cytosolic fumarate levels. Fumarate hydratase deficiency is a
rare inborn error in the metabolism inherited in an autosomal
recessive way, resulting in the accumulation of fumarate and a
severe metabolic disorder.38

More specifically, we use here in silico docking calculations
of fumarate and L-malate substrates in wild type and mutated
fumarases to estimate the corresponding protein−ligand
complexation enthalpies. The excellent correlation we obtain
between in silico enthalpies of complexation for a series of
fumarate derivatives in wild type fumarase and experimental
Gibbs free energies supports the above framework. The latter is
applied to extrapolate Gibbs free energies of complexation of
substrates in mutated enzymes. On the basis of these
correlations, we further show how our in silico estimates of
Gibbs free energies of complexation may be incorporated into
classical kinetic equations with competitive inhibition, allowing
us to predict the residual catalytic activities of mutated fumarase
in reference to the wild type, in remarkable consistency with
experimental findings.
The paper is organized as follows: our model and its

theoretical background are presented in the Theory section; the
Methods section presents both the details of our in silico
calculations and the essential experimental characteristics of the
test case; in the Results and Discussion section, the
computational and experimental results are compared, and
the domain of validity of the approach is discussed, allowing
one to draw the final conclusions.

■ THEORY
Theoretical Frame for the Enthalpy−Entropy Com-

pensation Effect. It is widely acknowledged how favorable
thermodynamic changes in binding enthalpies or entropies are
attenuated by the so-called enthalpy−entropy compensation, a
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ubiquitous, although still not fully understood, phenomenon in
biomolecular interactions.20−26 The enthalpy−entropy com-
pensation effect describes the occurrence of a linear relationship
between enthalpy and entropy changes associated with the
same change in free energy (Figure 1). This compensation

effect is typically understood in physical adsorption phenomena
by a reduction of the degrees of freedom of the “guest”
molecule (i.e., a loss of entropy, negative ΔS) in its “host”
adsorption site associated with a gain in binding energy (gain of
enthalpy; i.e., ΔH negative), the variation in entropy and
enthalpy, ΔS and ΔH sharing the same sign. A correlation was
recently proposed among molecular confinement, compensa-
tion effect, and catalytic activity in the context of adsorption of
molecular substrates inside porous crystalline catalysts.39

In the field of protein−ligand complexes, no established
explicit expression between enthalpic and entropic contribu-
tions has been proposed from fundamental thermodynamics so
far, although the enthalpy−entropy compensation effect has
been universally observed in protein−ligand complexation or
other host−guest systems,20−26,40−44 leaving its physical origin
still under controversy. It is worth noting that the utility of
high-quality ITC structure−thermodynamic databases on the
thermodynamic contributions of enthalpy and entropy changes
to free energies of complexation has been highlighted in the
context of ligand design, considered as essential in the
clarification of compensation effects and structure−thermody-
namics correlations.45

The empirical linear correlation between entropy and
enthalpy of complexation in protein−ligand complexes (Figure
1) may be expressed as follows:

− Δ = Δ +T S a H b (1)

where ΔS represents the total entropy of transfer of the
substrate from the aqueous cytosol to the protein site, ΔH
represents the total enthalpy of transfer for the same process, T
is the temperature, and a and b are constants characteristic of
the protein but independent of the substrate.30,31,45 From these
studies, it appears that a is quasiuniversal and approximated to
−0.93 (Figure 1) and b varies significantly with the considered

protein in the approximate range from −14 to −3 kcal mol−1.
In the following, we develop a formal analysis of enthalpy−
entropy compensation and develop a strategy to make a proper
use of the enthalpic information derived from docking
protocols applied to atomistic models of protein−ligands
interactions.
We introduce here our central assumptions regarding the

compensation effect. We rationalize such a correlation by
expressing the respective contributions of enthalpy and entropy
in the substrate−enzyme complex and by taking solvation/
desolvation effects into account. Primarily, the enthalpy of
transfer of the substrate (S) from the aqueous cytosol (W) to
the protein (P) is defined as the difference of affinity for the
substrate between the protein and the solution:

Δ = ⟨ ⟩ − ⟨ ⟩ Δ = ⟨ ⟩ − ⟨ ⟩H A A H A AorS
P
S

W
S W

P
W

W
W

(2)

where ⟨AP
S/W⟩ and ⟨AW

S/W⟩ may be calculated from in silico
docking calculations and represent the averaged affinities of the
substrate or water (S, W as uppercase) for the protein active
site (P as an index) and for the cytosol (W as an index),
respectively, over the docked poses. Affinities are here defined
for a single effect as minus the docking energies of the substrate
in complex, which themselves are taken as the sum of
intermolecular contributions to the total energy given by the
considered forcefield (CHARMm).
In this perspective, we further assume that the transfer of one

substrate molecule from solution to the protein active site
involves the retrotransfer of n molecules of water back into the
solution (desolvation), n corresponding to the number of
molecules required to fill the space occupied by the substrate in
solution.46 The total enthalpy change involved in the formation
of the protein−ligand complex (enthalpy of complexation) is
then decomposed as:

Δ = Δ − Δ + ΔH H n H HS W
conf
P

(3)

where ΔHconf
P represents the conformational enthalpic change

of the protein upon complexation. We consistently assumed
that this term is substrate-independent, considering that the
substrates' sizes and chemical functions studied here are very
similar. Similarly, the total entropy is expressed in its three
components that represent the entropic change related to the
substrate, the water, and the protein, respectively:

− Δ = − Δ + Δ − ΔT S T S nT S T SS W
conf
P

(4)

We consider that the larger the substrate, the larger the
number of water molecules displaced (noted n). That is
precisely the effect we attempt to model with eqs 3 and 4 by
splitting the total enthalpy and entropy of transfer into n
dependent and n independent contributions: ΔHS and −TΔSS
are thermodynamic contributions to enthalpic and entropic
changes assigned to the substrate for a given solvent, which
mostly reflect the changes of specific interactions (e.g.,
hydrogen bonds, local electrostatic interactions...) between
the substrate surface and its surroundings. Because these
interactions are of a short-range nature, it is legitimate to
consider that the free energy of transfer of a given substrate
from the cytosol to the protein site can be split into this surface
energetic contribution and a volume-related energetic con-
tribution that is dominated by the replacement of this volume
by water molecules (interacting mostly through the network of

Figure 1. Plot of the entropic versus the enthalpic contribution of
protein−ligand interactions measured by ITC for a set of 100 protein−
ligand complexes extracted from the BindingDB database.31
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hydrogen bonds inside the cytosol) initially filling the protein
site (retrotransfer). We thus justify our other assumption that
ΔHconf

P and −TΔSconfP , the contributions of the protein
conformational change upon transfer, are substrate-independ-
ent, provided the substrates are not too different in size and
chemical functions. These assumptions are, indeed, the basis of
our model, which was motivated by the need to interpret the
phenomenon illustrated in Figure 1; namely, that in eq 1, a is
almost universal (substrate and protein independent) and b is
substrate-independent and (weakly) protein-dependent. In the
Supporting Information, we give more support to these
observations.
Substituting eqs 3 and 4 into 1, we find an n-dependent

linear equation:

Δ + Δ + − Δ − Δ −

− Δ + Δ =

a H T S n T S T S b

a H H

( ) (

( )) 0

W W S
conf
P

S
conf
P

(5)

that allows determination of both coefficients, a and b, observed
in the empirical entropy−enthalpy correlation. The generality
of eq 5 for any value of n imposes that both coefficients must be
equal to zero.
The slope a may be expressed in general terms as follows:

= − Δ
Δ

a
T S

H

W

W (6)

and the intercept, b, of the entropy−enthalpy plot with the y
axis for a given protein as:

= − Δ − Δ + Δ
Δ

Δ + Δb T S T S
T S

H
H H( )S

conf
P

W

W
S

conf
P

(7)

It is then apparent that both constants, a and b, may be
estimated by considering the specific case of a single water
molecule as a substrate (S = W). Importantly, it results that the
constant b is related exclusively to the conformational energy
changes of the protein upon complexation,

= − Δ − Δ = Δ − + Δb T S a H G a H(1 )conf
P

conf
P

conf
P

conf
P

(8)

allowing a further simplification of 5 into:

Δ + Δ − Δ − Δ =a H T S n T S a H( ) 0W W S S
(9)

The slope of the entropy−enthalpy correlation, a, for any
substrate other than water (n ≠ 1) may be then written using
the above eq 9 as follows:

= − Δ + Δ
Δ − Δ

a
T S nT S

H n H

S W

S W (10)

The elimination of a between eqs 6 and 10 gives:

− Δ
Δ

= − Δ
Δ

=T S
H

T S
H

a
S

S

W

W (11)

Equations 6 and 11 may be also expressed respectively as:

Δ = + ΔG a H(1 )W W
(12)

Δ = + ΔG a H(1 )S S
(13)

Given that a is close to −1, (a ≅ −0.934 according to data
available in ITC databases; see Figure 1) eqs 6/11 and 12/13
show that, in general, the free energy change associated with
the transfer (of water as well as any other substrate) from
cytosol to a protein site is very low compared with the enthalpy

change and, therefore, compensated by the entropy change. If a
were exactly equal to −1, any protein would lose its selectivity
(or substrate specificity) for competing substrates. The total
free energy of transfer would be, according to eq 8, equal to the
protein-dependent b constant and determined by the
conformational change of the protein upon exchange of water
with cytosol. One can therefore view b as a measure of the
protein hydrophilicity and a as a measure of the protein ability
to select substrates. Proteins have evolved as hydrophilic
macromolecules (b < 0) capable of selectivity bind substrates
and generally resistant to substrate overbinding, thanks to the
enthalpy−entropy compensation effect. The latter is deter-
mined by the properties both of water as a hydrogen-binding
solvent and of proteins as hydrogen-binding receptors. This can
be viewed as proteins as “living” molecular catalysts “exploiting”
the compensation effect to comply to the principle of Sabatier.
Incidentally, assuming that entropy and enthalpy changes

upon transfer are almost independent of temperature around
ambient conditions, eq 6 implies that a is strictly proportional
to T. This allows determining the compensation temperature
for which the free energy change associated with the transfer of
water would vanish for any protein (a(Tcomp) = −1), i.e. Tcomp
≅ 319.2 K (≅ 46 °C). At this temperature, similarly to the
discussion above, the intercept, b, of the −TΔS = f(ΔH) plot of
any substrate−protein complex expresses the free energy of
transfer of the substrate from solution to the protein as reduced
to the conformational contribution, as shown by eq 8. One then
expects serious physiological perturbations for most organisms
because any given protein would lose its selectivity (or
substrate specificity) for competing substrates. It is likely
(however, still to be checked) that proteins from thermophilic
organisms may present higher compensation temperatures (i.e.,
would lie on other correlations with slopes significantly
different from above).
Still, it is apparent from eq 8 that the intercept, b, of the −

TΔS = f(ΔH) plot depends on the protein and might therefore
show specific variations upon mutations. In a further attempt to
capture the impact of mutations on b, we consider one
mutation (mut) and the reference wild type (wt) noted as
exponents, and express the universal slope, a, from eq 6:

=
− Δ

Δ
=

− Δ
Δ

− Δ + Δ = − ΔΔ = Δ − Δ

a
T S

H
T S

H

T S T S T S a H H

or

( )

wt
W

wt
W

mut
W

mut
W

mut
W

wt
W W

mut
W

wt
W

(14)

Our second strong hypothesis is that upon a mutation, the
change of conformational enthalpy is negligible, whereas the
change in conformational entropy is equal to (or exactly
absorbs) the difference in variation of entropy experienced by a
single water molecule upon transfer from cytosol to the
catalytic site. Using eqs 8 and 14, we can now express the
impact of a mutation on the intercept, Δb, as follows:

Δ = − = − ΔΔ = − ΔΔ

= Δ − Δ

b b b T S T S

a H H( )

mut wt
conf
P W

mut
W

wt
W

(15)

Kinetic Models for Fumarase Enzymatic Activity. The
hydration of fumarate into L-malate is a stereospecific
bimolecular reaction, equilibrated by its reverse reaction, the
dehydration of L-malate:

+ ⇔ ‐fumarate H O malateL2
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It is an important step in the Krebs cycle, catalyzed in
particular by human mitochondrial fumarase (EC 4.2.1.2).
According to previous studies,47−50 the kinetics of these
reactions can be described by a classical competitive
Michaelis−Menten model in which fumarate and L-malate
compete for the same site, which catalyzes the direct and
reverse reactions. Water supply is implicitly assumed not
limiting. Fumarase activity is strongly affected by pH, with a
maximum around pH = 6.5 for the direct reaction and around
7.5 for the reverse reaction at 25 °C.47 This effect has been
successfully accounted for by the Haldane model.51 At a fixed
pH, the competitive Michaelis−Menten interpretation provides
apparent (pH-dependent) KM and Vmax. A catalytic mechanism
and a sophisticated 11-state model estimating kinetic
parameters were recently proposed.52

In what follows, we propose to describe the kinetics by the
more general Langmuir−Hinshelwood model, the correspond-
ence of which with the Michaelis−Menten approach can be
easily established (see the Supporting Information). For the
time being, we do not account for the effect of pH. We make
the assumption of the existence of two distinct “sites”, 1 and 2,
in the fumarate hydration process: site 1 specifically binds
fumarate, the transition state, and L-malate, and site 2, in close
proximity to site 1, specifically binds water. We justify this
assumption below on the basis of our molecular simulations.
Transition State Theory. As mentioned above, fumarate

and L-malate are assumed to compete for a single active site
(site 1) at the protein, the amount of which is fixed. According
to the Eyring transition state theory, the rate of fumarate

hydration and L-malate dehydration, expressed in molecules
consumed per site and per second, may be written generically
as:

θ θ⃗ =
−Δ →

±⎛
⎝⎜

⎞
⎠⎟r

k T
h

G
RT

expB
2,W 1,F

(16)

θ⃖ =
−Δ ←

±⎛
⎝⎜

⎞
⎠⎟r

k T
h

G
RT

expB
1,M

(17)

where kB and h stand for the Boltzmann and Planck’s constants,
respectively; R, for the ideal gas constant; and ΔG→

± and ΔG←
±

are the temperature- and protein-dependent intrinsic free
energies of activation for the hydration and dehydration
reactions referred to reactants and product in the complex,
respectively.
The fractional coverages θ1,F, θ1,M, and θ2,W in fumarate, L-

malate, and water, respectively, are proportional to the
corresponding fraction of free sites (θ1,*, θ2,*), according to
the law of mass action, expressed here for the wild type
enzyme:

θ θ=
−Δ

*

⎛
⎝⎜

⎞
⎠⎟

C
C

G
RT

exp1,F 1,
F

F,1/2
wt

F
wt

(18)

where CF and CF,1/2
wt represent the concentration of fumarate in

the cytosol at equilibrium in the wild type fumarase and the
concentration of fumarate in cytosol for which half of sites 1 are
occupied by fumarate (protein dependent), respectively, and

Figure 2. Schematic representation of the free energy diagram of fumarate hydrolysis into L-malate. Energy levels in the wild type and in the mutated
proteins are represented in black and blue, respectively.The free energy terms are defined as follows, with respect to the reference state: ΔG′mut =
ΔGmut + [ΔGmut − ΔGwt], expressed for fumarate, malate, and water. From the BEP relationship: ΔG→′±,wt = λδΔG′wt + μ and ΔG→′±,mut = λδΔG′mut +
μ so that by subtraction, we obtain ΔG→′±,mut = ΔG→′±,wt + λ[δΔG′mut − δΔG′wt] (in the present case, λ = 1), with ΔG←′±,mut = ΔG→′±,mut + δΔG′mut.
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ΔGF
wt is now the free energy of transfer of fumarate from the

cytosol to site 1 in the wild type. Similarly, we may write:

θ θ=
−Δ

*

⎛
⎝⎜

⎞
⎠⎟

C
C

G
RT

exp1,M 1,
M

M,1/2
wt

M
wt

(19)

θ θ=
−Δ

*

⎛
⎝⎜

⎞
⎠⎟

C
C

G
RT

exp2,W 2,
W

W,1/2
wt

W
wt

(20)

where θ1,F and θ1,M are the fractional coverages of sites 1 by
fumarate and L-malate respectively; θ2,W, the fractional
coverages of sites 2 by water; and θ1,* and θ2,* are the
respective fractions of free sites. These relationships are valid
for the wild type as well as the mutated enzymes, provided the
free energies are appropriately referred, as discussed below. In
what follows, we adopt the convention that CF,1/2

wt = CM,1/2
wt = 1

mol L−1 for the wild type protein. In other terms, we refer the
free energies of transfer of solutes from cytosol to protein sites
to the states of half coverage of sites. As a consequence:

=
+Δ − Δ −⎛

⎝⎜
⎞
⎠⎟C C

G G
RT

exp mol LF,1/2
mut

F,1/2
wt F

wt
F
mut

1

(21)

where mut refers to a mutant, and wt to the wild type protein.
Similar equations stand for water and L-malate (see the
Supporting Information (SI)). The balance equations for sites 1
and 2 give:

θ θ θ θ θ+ + = + =* *1 and 11,F 1,M 1, 2,W 2, (22)

Eliminating θ1,* and θ2,*, we finally obtain, for any mutant,
master rate equations (see the full expressions of rates in the
SI) dependent on a set of parameters and variables listed as:

⃗ ⃖ = Δ Δ Δ Δ

Δ Δ Δ →
±

r r f k T h G G G G ,

G G G C C C

C C C

, ( , , , , , ,

, , , , ,

, , )

mut mut
B F

wt
M
wt

W
wt

F
mut

M
mut

W
mut ,mut

F M W

F,1/2
wt

M,1/2
wt

W,1/2
wt

(23)

The corresponding expressions for the wild type are the same,
deduced by replacing mut by wt and simplifying.
BEP and Rationale for the Impact of Mutations. Linear

free energy relationships imply that changes in activation free
energies are linearly correlated with concomitant changes in
free energy differences between reactant and product, that is,
free energy of reaction (see for instance eq 1 in ref 53).53,54

Theoretical studies have lent them strong support, and their
validity is now widely accepted because many reactions follow
such relationships.55 LFERs are thus extensively used in enzyme
catalysis to correlate reaction rates with the corresponding
equilibrium constants and develop quantitative approaches.53,54

However, for a given reaction catalyzed by related but different
enzymes with variable activity, for example, wild type and
mutated, because the free energy of reaction does not change
but reaction barriers may change, the only way a LFER may
hold is if the barrier correlates with the free energy difference
between reactant and product in complexes. This has been
recognized for a long time in the context of heterogeneous
catalysis,32−35 in which LFERs are called Brönsted−Evans−
Polanyi relationships.
We assume the general validity of a BEP linear relationship

between the free energy of activation in the forward direction
and the free energy difference δΔG between the reactants in
the complex and the product in the complex (Figure 2):

λ δ μΔ = Δ +⎯ →⎯⎯⎯⎯
±G G( ) (24)

where λ and μ do not depend on the mutations of the protein.
Using the above BEP concept, Figure 2 gives a schematic

representation of the free energy diagram of fumarate
hydrolysis into L-malate, summarizing the various thermody-
namic and kinetic components of both the wild type and
mutated enzymes. For a given protein (wild type or mutated),
introducing ΔGR as the free energy difference associated with
the hydration reaction of fumarate into L-malate in aqueous
solution, we can write, properly taking into account the various
free energy references:

δΔ = Δ − Δ + Δ

− −Δ + Δ − Δ + Δ

G G G G

G G G G

( 2 )

( 2 2 )

mut
R M

wt
M
mut

W
wt

W
mut

F
wt

F
mut

(25)

Finally, as illustrated in Figure 2, the consistency requirement
for the free energy profile connecting fumarate in solution to L-
malate in solution along the reaction pathway involving the
reactants and common transition state in complex is expressed
as:

δΔ = Δ + Δ←
±

→
±G G G,mut ,mut mut

(26)

Combining eq 24 for mutated and wild type proteins, we
deduce:

λ δ δΔ = Δ + Δ − Δ→
±

→
±G G G G[ ],mut ,wt mut wt

(27)

Combining now eqs 26 and 27 for mutated and wild type
proteins, we obtain:

λ δ δΔ = Δ + − Δ − Δ←
±

←
±G G G G( 1)[ ],mut ,wt mut wt

(28)

Importantly, the BEP relationship expresses the fact that the
conformation of the transition state and of the product in
complex would be closely related and merely translated by
similar amounts on the free energy scale as a consequence of
point mutations expressed in the host enzyme.
In summary, eqs 1−15 allow us to estimate ΔGF

mut, ΔGM
mut,

and ΔGW
mut directly from docking studies. In addition, ΔGR is

well-known from experiment so that the connection with
forward and reverse free energy barriers is provided by the BEP
relationship, eqs 24−28. This lets us predict enzymatic rates in
silico for any mutated fumarase using eq 23 once λ and μ have
been determined from a “training” data set. In the following, we
test this method against experimental data available for patients
affected by inherited fumarase deficiency.

■ METHOD
Recently, the high resolution structure of wild type human
mitochondrial fumarase (EC 4.2.1.2) has been reported by
Kavanagh et al.56,57 from the Structural Genomics Consortium
(PDB file 3E04). This disclosure offers an opportunity for
direct in silico assessment of the normal hydratation of
fumarate into L-malate and its pathogenic alterations recently
available from enzymatic assays.58 The enzyme occurs as a
tetrameric complex, as shown in Figure 3. Previous crystallo-
graphic studies of the analog fumarase C expressed in
Escherichia coli by Weaver et al.59−63 have established two
distinct sites, I and II, that can bind carboxylic acids. Site I,
shown in Figure 3, lies at the interface of three monomers,
being considered as the putative active site, and site II is
believed to be involved in the allosteric regulation of the
enzymatic activity. Site II includes His129, Asn131, Asp132,
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and Asp133, whereas site I involves Thr 100, Ser 137, and Ser
138.
We looked for the binding sites in the wild type human

fumarase from its recently disclosed crystal structure. Through
sequence alignment, we find the corresponding residues for EC
4.2.1.2; namely, His176-Pro177-Asn178-Asp179 for site II and
Thr149-Ser186-Ser187 for site I.
In the present work, we considered four new point mutations

that have been recently clinically characterized by some of us in
three patients:58 L453P (referred to as P1), L218P and
K477dup (referred to as P2), and S171N (referred to as P3). In
a further attempt to test the predictive value of our model, four
additional mutants from patients exhibiting acknowledged FH
deficiency or renal cancel (RCC) were also considered relying
on the recent database of FH mutations by Bayley et al.,64,65

borne by different exons at the DNA level. We have considered
His402Cys66 (FH, exon 8); Asn361Lys67 (RCC, exon 7);
Ser419Pro68 (RCC, exon 9); and the first reported FH
mutation by Bourgeron et al. in 1994, Glu262Gln69 (FH, exon
7). Figure 4 reports the spatial localization of the point
mutations considered in this work with respect to the putative
catalytic site I, represented by a dark red surface. We have
selected a representation showing their closest positions around
one of the four active sites of the tetrameric enzyme, allowing
visual differentiation of mutations directly affecting the active
site from those involved, rather, in its peripheral region.
The mutations considered here may affect various regions of

the protein. Mutations such as N361K, Q362G, L453G, and
K477dup are located in the immediate environment of the
active site, whereas other mutations lie rather in more
peripheral regions (S171N, H402C, L218P, and S419P). We
verified further that the considered mutations do not
significantly affect the computed tetramerisation energies of
fumarase, which remains stabilizing, within 8 ± 0.5% of the
total energy within the CHARMm forcefield. We therefore
predict that fumarase tetrameric complexes may remain

integrally expressed in cells of the patients bearing those
duplication or missense mutations.
Using the wild type and mutated human fumarases, docking

calculations were performed for water, fumarate, fumarate
derivatives, and L-malate sequentially at site I and in an explicit
solvation box. Energies of docking were used to evaluate
enthalpies of transfer as expressed in eq 3, neglecting in a first
approximation the conformation enthalpic change upon
complexation and estimating that seven water molecules were
transferred back into the solution upon the substrate
complexation to the protein.46 All calculations were performed
within the Discovery Studio version 2.5.5 suite of programs
(DS 255) as licensed by Accelrys Inc.70 Docking computational
details are given in the Supporting Information.

■ RESULTS AND DISCUSSION
In a first step, docking simulations were started on fumarate
related substrates in wild type fumarase. We have used the
experimental study by Teipel et al.47−50 which explores the
substrate specificity of wild type fumarase for fumarate. Using
our computed energies of docking for the various derivatives
together with those of water, in silico enthalpies of transfer of
eight fumarate derivatives and related substrates have been
derived from eq 3, neglecting for the time being the term
ΔHconf

P , assumed constant (see the Theory section). It is worth
recalling that the n-term expresses the enthalpic contribution of
the release of water molecules from the protein site to the
cytosol, occurring upon substrate complexation.
Figure 5 plots the experimental Gibbs free energies of

complexation for the eight considered substrates in wild type
fumarase, deduced from Michaelis constants measured by
Teipel et al.,47−50 as function of in silico approximation of
enthalpies of transfer, which we note ΔH*, with ΔH* = ΔHS −

Figure 3. Schematic representation of human fumarase (PDB 3E04)
highlighting the tetrameric assembly of the protein. Each monomer (A,
B, C, D) is colored distinctively. The four active sites I, as determined
from preliminary site searching, are highlighted in red, each of them
localized at the interface of three monomers.

Figure 4. Schematic ribbon representation of the position of the
various mutated residues considered in this work, around one of the
active sites I (solid red) here at the interface of chains A, C, and D.
Mutated residues carried by chains A, B, C, and D are located by their
stick representation in yellow (chain A), blue (chain B), green (chain
C), and red (chain D). The newly reported FH mutations from ref 58
are underlined in black.
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nΔHW. These in silico enthalpies correlate linearly remarkably
well with experimental free energies of complexation, with a
regression coefficient of R2 = 0.896, reflecting that our
sequential docking calculations correctly capture the inter-
actions at play. This linear correlation is represented by:

Δ = *Δ * + * = Δ * −G H b Ha 0.0525 10.734 (29)

expressed in kilocalories per mole.
We notice that in combining eqs 3 and 4, one can write:

Δ = Δ + Δ − ΔG G G n GS
conf
P W

(30)

and using 8, 12 and 13, we obtain:

Δ = + Δ − Δ + + + ΔG a H n H b a H( 1)[ ] [ ( 1) )]S W
conf
P

(31)

which gives a theoretical basis to the empirical correlation, eq
29. Considering the statistical errors associated with empirical
correlations, the prediction a* = (a + 1) is verified within 20%,
with a*/(a + 1) ≈ 0.8. We also obtain b* = b + (a + 1)ΔHconf

P ,
offering an experimental evaluation of ΔHconf

P . Comparing eqs 1

and 29 and keeping the experimental discrepancy observed, it is
straightforward to recover eq 3, rewritten:

Δ = *
+

Δ * + Δ⎜ ⎟⎛
⎝

⎞
⎠H

a
a

H H
1 conf

P

(32)

(for the wild type fumarase, ΔHconf
P ≈ −28 kcal mol−1)

Therefore, the interval of ΔH spanned by fumarase
substrates shown in Figure 5 would be approximately 25−80
kcal mol−1. In a next step, it is straightforward to deduce the in
silico estimate of entropies of complexation from eq 32, which
turn out to be systematically positive. Because our in silico
estimates of the enthalpies of complexation are also (strongly)
positive, the conclusion is that the protein−ligand complexation
is entropically driven (Table 1).
To evaluate ΔH for the complexation of fumarate, L-malate,

and water in mutated enzymes, we rely on eq 15 so that:

Δ = Δ * + * − + Δ
+

⎛
⎝⎜

⎞
⎠⎟H H

b b b
a

( )
1 (33)

Importantly, Figure 6 further reveals the remarkable
consistency between our linear −TΔS = f(ΔH) correlation
on WT fumarase (red dots) and the correlation obtained from
isothermal titration calorimetry (ITC) data (deep blue dots) on
a breadth of protein−ligand complexes (i.e., ∼110 protein−
ligand complexes from Binding DB database).31 The
renormalization implied by eq 33 also leads to consistent
predictions of the free energy of complexation of fumarate, L-
malate, and water in mutated fumarases (green dots), relying
on the general compensation effect presented as the starting
point of our theoretical analysis in the theory section.
Although we are aware that CHARMm-based docking

calculations may yield only “effective” enthalpies of transfer
(in contrast with “true” enthalpies), our correlative approach
based on a training set of experimental Km for the wild type
allows us to predict “true” free energies of transfer.
Figure 6 shows that our computed −TΔS components versus

ΔH do correlate, suggesting that the quality of the forcefield
used is not a major issue.
Here, we should emphasize the general pattern and principle

of the so-called “enthalpy−entropy compensation effect” at play
in confined host−guest systems. In the context of molecular
physisorption of organic molecules in porous zeolites, for
example,71−75 it was experimentally observed that the enthalpic
gain upon adsorption (driving force) is systematically
compensated by an entropic loss.

Figure 5. Linear correlation found between experimental free energies
of complexation of various substrates by fumarase (adapted from refs
47−50) and in silico average affinity differences between the site and
an explicit water solvation box (enthalpy of transfer, see the Methods
section). Inset: equation of the regression line and value of the squared
coefficient of correlation R2.

Table 1. Comparison of Free Energies of Complexation of Fumarate and Fumarates Derivatives in Wild Type Fumarase from
Experiment and Calculations

Km mol L−1 (expa) ΔG kcal mol−1 (expb) ΔH kcal mol−1 (simc) ΔS kcal mol−1K−1 (simc) −TΔS kcal mol−1 (simc)

fumarate 5.0 × 10−6 −7.28 26.4 0.11 −33.6
L-malate 2.5 × 10−5 −6.32 38.5 0.15 −44.8
F-fumarate 2.7 × 10−5 −6.27 50.4 0.19 −56.6
Br-fumarate 1.1 × 10−4 −5.44 48.1 0.18 −53.5
I-fumarate 1.2 × 10−4 −5.38 48.3 0.22 −53.7
Cl-fumarate 1.1 × 10−4 −5.44 49.8 0.18 −55.2
mesaconate 5.1 × 10−4 −4.52 62.7 0.22 −67.2
L-tartrate 1.3 × 10−3 −3.96 77.1 0.27 −81.1
water 1.5 × 10−8 −10.73 0 0.036 −10.73

aExperimental values of Km are taken from Teipel et al.47−50 bAt equilibrium conditions, the Michaelis constant Km is related to the Gibbs free-
energy change of transfer, ΔG, through: ΔG = RT ln Km.

cΔH sim were estimated using eq 32 taking the number of retrotransfer water molecules as
n = 7.
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This was further computationally exemplified and theoret-
ically analyzed by one of us.39 According to this latter analysis,
above the so-called “confinement compensation temperature”,
entropic losses overcompensate the enthalpic gain so that
physisorption in microporous solids is no longer spontaneous.
In the case of protein−ligand complexations, the above-

mentioned experimental correlations show that if variations of
enthalpy are frequently negative, they may also be positive. In
these latter cases, the corresponding variations of entropy are
also systematically positive.
In the case of halogenated fumarates, mesaconate, and L-

tartrate vs fumarase, we find in silico highly positive ΔH and
deduce also very positive ΔS (Table 1). This can be understood
in light of the nice very recent results of Lai et al.76 From
molecular dynamics simulations allowing calculations of
absolute binding free energies and entropies of binding of
HIV-1 protease inhibitors Nelfinavir and Amprenavir, the latter
authors conclude that the favorable entropic contribution to
binding is dominated by the ligand desolvation entropy. It can
thus be inferred that for highly hydrophilic substrates (i.e.
strongly solvated in water (cytosol)), binding may be
disfavored from an enthalpic standpoint, but still favored by
the entropy gain upon desolvation (water release). In our cases,
we dock fumarate derivatives of related dicarboxylic anions,
therefore very hydrophilic, and find accordingly higher affinities
for water than for the protein sites. Equation 2 leads, therefore,
to very positive ΔH values, and from correlation 29, we infer
positive ΔS values. We understand from the argument of Lai et
al. that the latter is dominated by the strong desolvation
entropy of our substrates.
In a second stage, we made use of the correlation found

above to predict reaction rate constants of hydrolysis of
fumarate into L-malate with respect to the mutated proteins as
built in silico. We have demonstrated above in the Theory
section how this can be achieved by a combination of a

Langmuir−Hinshelwood microkinetic model and the BEP
linear free energy relationship.
Figure 7 compares the experimental residual enzymatic

activities of mutated fumarases relative to the wild type from

three different patients58 and our predicted residual activities
using the Langmuir−Hinshelwood model as processed from
the in silico docking calculations. We used as a training set
these three most recent clinical cases of hereditary fumarase
deficiency, that is, L453P (P1), L278P and K477dup (P2), and
S171N (P3), in which it was highlighted that the residual
enzymatic activities measured in fibroblasts correlates well with
the syndrome severity of patients. In the later work, the test

Figure 6. Plot of the calculated enthalpies of complexation, ΔH, of
fumarate, L-malate, and water versus the entropy component, −TΔS,
(from eq 32) in mutated human fumarase (green dots, and linear
regression for this plot, green line, equation and squared coefficient of
correlation in inset with green characters), as compared with
experimental ITC data extracted from Binding DB database (deep
blue dots; and linear regression for this plot, deep blue line; equation
and squared coefficient of correlation in inset with deep blue
characters). Also shown is the plot for the complexation of fumarate
derivatives in the wild type from eq 32. (red dots; and linear regression
for this plot, red line; equation and squared coefficient of correlation in
inset with red characters).

Figure 7. (a) Correlation between experimental relative residual
activities taking the wild type fumarase activity as the reference and in
silico relative rates using Langmuir−Hinshelwood and BEP models.
Four mutations were used as a training set (Leu453Pro, Lys477Dup,
Leu278Pro, Ser171Asp). (b) Prediction of relative rates of four
mutations from in silico calculations.
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involves the measurement of the rate of absorbance at 250 nm
(detection of fumarate) in the initial linear regime upon
addition of 100 μL of a 500 mM solution of L-malate to 0.9 mL
of a phosphate-buffered 20% Triton suspension of fibroblasts.
For control assays (wild type fumarase), a mean activity of 370
nmol min−1 mg protein−1 (4.38 × 106 s−1) was recorded, with
∼±30% repeatability. For the three patients, P1 (L453P), P2
(L278P/K477dup), and P3(S171N), residual activities were
reported to be 0% (undetectable), 20%, and 60%, respectively.
Note that patient 2 bears two different mutations, one on each
allele, so that the experimental assay is expected to reflect an
average of the residual activities, which could be virtually
assigned to cells from two patients, each being homozygous for
one of these mutations.
Considering the experimental conditions, we estimate that

the prevailing L-malate and fumarate concentrations at the
recording point are 49 × 10−3 mol L−1 and 1 × 10−3 mol L−1,
respectively. Using eqs 16−23, we compute for each mutant the
predicted relative rate rrprod

mut of production of fumarate in the
assay conditions as:

= ⃖ − ⃗
⃖ − ⃗

r r
r r

rr
( )

( )pred
mut

mut mut

wt wt
(34)

We have determined the coefficients λ and μ of the BEP
relationship 24 as those providing the best coefficient of
correlation in the parity diagram of predicted vs experimental
relative residual rates of fumarate production, involving each
mutation of patients 1 and 3 and the average for the two
mutations reported for patient 2.
Because this procedure was consistent with a value of λ close

to 1, it was fixed at 1, which is expected in general for such free

energy linear relationships when the transition state config-
uration is very close to that of the product (here, L-malate).
Left with a single free parameter to refine, we converge for μ

= 14.29 kcal mol−1. The corresponding parity diagram shown in
Figure 7 exhibits an almost perfect linear correlation, with an
excellent regression coefficient, R2 = 0.967 (slope of 1.004;
intercept of 0.064). Forcing the regression line to intercept zero
degrades only slightly this correlation, with R2 = 0.956 (slope of
1.086).
We made no attempts to account for the error margin

involved in the experimental measurements. Notice that when λ
= 1, the reverse intrinsic activation energy ΔG←

±,mut becomes
constant (mutation-independent) by virtue of eq 28. It ensues
from eq 23 that the relative rates of the inverse reaction are
strictly correlated to the coverage of sites by L-malate. In other
terms, the experimental assay of residual enzymatic activities
consisting of measuring the initial rate of consumption of L-
malate measures this coverage.
Overall, the estimates of residual activity obtained within the

Langmuir−Hinshelwood model provides an excellent correla-
tion with the results obtained from in vitro enzymatic assays of
the isolated proteins. Typically, patient 1 (L453P) has the most
severe fumarase deficiency, and its fumarase appears exper-
imentally practically inactive. This is very well reflected in the in
silico predictions by a reduction of its residual enzymatic
activity by 100%. In the special case of patient 2, Figure 7 shows
the individual predicted relative rates for each mutation taken
individually, L278P and K477dup (open circles). The impacts
of both mutations were further averaged in the estimation of
rate constants to account for the fact that the fumarase

Table 2. Free Energies of Complexation of Fumarate, L-Malate in Mutated Fumarase, Derived from Docking Calculationsa

Km mol L−1 ΔGkcal mol−1 ΔH kcal mol−1 ΔS kcal mol−1 K−1 −TΔS kcal mol−1

wild type
fumarate 5. × 10−6 −7.28 26.4 0.11 −33.64
L-malate 2.5 × 10−5 −6.32 38.5 0.15 −44.81

patient 1
fumarate 0.00287 −3.49 43.86 0.16 −47.35
L-malate 0.04615 −1.83 68.99 0.24 −70.83

patient 2
fum. (L218P) 0.00030 −4.83 36.35 0.14 −41.19
L-mal. (L218P) 0.00314 −3.43 57.54 0.20 −60.98
fum. (K477dup) 3.1 × 10−6 −7.56 21.96 0.10 −29.52
L-mal. (K477dup) 4.5 × 10−5 −5.96 46.16 0.17 −52.12

patient 3
fumarate 9.6 × 10−6 −6.89 25.76 0.11 −32.65
L-malate 8.1 × 10−5 −5.62 45.03 0.17 −50.64

Glu362Gln
fumarate 0.00014 −5.28 31.75 0.12 −37.04
L-malate 0.00275 −3.51 52.62 0.21 −62.14

His402Cys
fumarate 0.00060 −4.42 31.43 0.12 −35.85
L-malate 0.00990 −2.75 56.76 0.19 −59.52

Asn361Cys
fumarate 3.9 × 10−5 −6.05 32.61 0.13 −38.67
L-malate 0.00048 −4.54 55.45 0.20 −60.0

Ser419Pro
fumarate 0.00016 −5.22 16.05 0.07 −21.27
L-malate 0.00205 −3.69 39.33 0.14 −43.02

aThe respective contribution on the enthalpic change and entropic change upon transfer from the solution to the protein active site are given, as
obtained from docking calculations and free energy/enthalpy correlations (eq 33). Numerical values for water are given in the SI.
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tetrameric complexes may randomly express one or the other of
the two mutations over the four tetramers.
It is noteworthy that although each mutation has distinct

impacts on fumarase activity (∼10% and ∼50% residual
activities), the averaged rate falls remarkably well on the
regression line, with a residual activity of ∼30%, supporting the
correctness of the individual rates.
It should be noticed that at this point, to obtain such a result,

it is important to effectively include the mutation-dependent
correction on the intercept b of the correlation ΔG = f(ΔH),
according to eq 15 proposed above. If this correction is
omitted, the predicted free energy of complexation of water in
the protein site becomes invariant to mutations. Keeping in that
case λ = 1 and μ = 14.29 kcal mol−1, our Langmuir−
Hinshelwood model still yields an excellent correlation between
in silico predictions and experiments (R2 = 0.98) but loses
parity because a relative residual activity of 0.36 instead of ∼0 is
now predicted for P1. In view of the considerations above on
the consequence of setting λ = 1, this reflects actually a
systematic overestimation of the coverage in L-malate for all
mutations.
To further investigate the extent to which our approach

might be used to predict fumarate deficiencies and the related
residual activities, we considered other cases of FH mutations
reported in the literature, including three biallelic and one
monoallelic mutations, that is, on one hand Glu362Gln,
His402Cys, Asn361Lys; and on the other hand, Ser419Pro,
acknowledged to be mainly responsible for FH deficiency
(Glu362Gln and His402Cys) or renal cancer (Asn361Lys and
Ser419Pro).
Despite the quite large number of mutations known to

date,64,65 the number of mutations studied here was restricted
to those for which measurements of FH enzyme activity were
available and performed on fibroblasts. This was to ensure a
comparison of data with the patients P1, P2 ,and P3 collected in
similar conditions. In the case of Ser419Pro, the experimental
residual activity measured on fibroblasts of the heterozygous
patient is predicted by the average of predictions for WT
(relative activity 1) and for the in silico mutation. Indeed, as in
the case of patient 2, the residual enzymatic activity is assumed
to result from the average expression of the genes borne by the
two alleles.
The corresponding predictions of residual FH activity for

these four additional mutations are reported in red on the
parity diagram of Figure 7. The regression line involving both
the initial training set and the additional mutations set is not
significantly modified, with R2 = 0.951 (slope = 1.036, intercept
= 0.074).
It appears that the considered mutations always increase the

Michaelis constants, KM, (Table 2) in a rather systematic
fashion for both fumarate and L-malate substrates with respect
to the wild type, as could be expected from weaker enzyme−
substrate interactions in mutated enzymes.
However, the predicted rates do not correlate with the

observed residual fumarase activities if we use a noncompetitive
Michaelis−Menten model. Taking the competitive inhibition
by L-malate into account, the Langmuir−Hinshelwood model,
which we have shown identical to the competitive Michaelis−
Menten model, yields an excellent correlation between the
observed and the predicted reaction rates. From the above, it is
apparent that the impact of mutations on the residual
enzymatic activity is extremely complex, consisting of
independent effects on individual Michaelis constants KM,

that is, individual free energies of complexation of fumarate,
malate, and water (ΔGF

mut, ΔGM
mut, ΔGW

mtt) on one hand, and on
activation barriers that result from the linear combination of
free energies (ΔGF

mut, ΔGM
mut, ΔGW

mtt, ΔGR) on the other hand. It
obviously follows that a simple comparison of docking
calculations on substrate-mutated enzymes with respect to the
wild type is not sufficient to accurately predict relative
enzymatic activities. For instance, the free energies of
complexation of fumarate correlate badly with experimental
residual activities (R2 ∼ 0.49), and the free energies of
complexation of L-malate are only slightly better (R2 ∼ 0.62).
Still, in light of the successful prediction of residual activities,

we have analyzed the host−guest interactions of substrates in
the wild type and mutated enzymes, in an attempt to get
molecular insights into FH deficiency and identify interactions
that might be responsible for the deterioration of enzymatic
activities. We have localized the catalytic site as the cavity
within the wild type fumarase complex not only large enough to
accept substrate docking attempts but also on a physicochem-
ical consistency criterion.
As shown in Figure 8a for the WT protein, S186 and S187,

together with L371, were identified as the key amino acids. The
docked fumarate develops multiple hydrogen bonds between
one of its carboxylate group and −OH groups of two adjacent
serines, Ser186 and Ser187, from 1.9 to 2.1 Å, while the other
carboxylate group interacts with the proximal −CH2− group in
the α position with respect to the positively charged terminal
amino of Lys371, at a larger distance of 2.4 Å. We believe this
predicted mode of anchoring of fumarate in the wild type active
site prevents the rotation of the substrate around the axis of its
double bond, a favorable prerequisite for the stereoselective
nucleophilic attack of water in the remaining free space of the
active site pocket, leading exclusively to the L-malate product.
The comparison of fumarate locations in mutated enzymes

reveals from mild to marked modifications in substrate−ligand
interactions (Figure 8b and SI Figure S1). We observe that
point mutations in the (either immediate or peripheral) region
of the active site induce variously severe alterations of the above
substrate−ligand interactions, especially when precluding the
formation of the multiple hydrogen bonds between both
oxygen atoms of one of the carboxylate groups and the two
adjacent serines Ser 186 and Ser 187 (a common feature to all
mutations considered).
Moreover, for patient 1 (L453P), we note that the

combination of the above effect with the suppression of
interactions between the other carboxylate group and the L371
amino acid in the mutated enzyme results in a severe
deterioration of fumarate anchorage in the active site, reflected
in the particularly low absolute value of the computed free
energy of binding (high KM), in correlation with the nearly total
loss of fumarase activity of patient 1. Conversely, patient 3, in
whom both types of interactions are maintained although
altered, exhibits a mild FH deficiency, suggesting that binding
interactions at both carboxylate ends may be required to
maintain some enzymatic activity.

■ CONCLUSION
The present work successfully predicts enzyme activity changes
upon mutation on the basis of two generally observed linear
relationships, that is, the linear correlation between enthalpy
and entropy changes resulting from protein−ligand binding, on
one hand, and the BEP relationship between the free energy
change of a reaction (between reactants and products in a
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complex) to the free energy of activation or reaction rate, a
special case of linear free energy relationship (LFER), on the
other hand. An important implication of the present work is to
provide a universal theoretical framework allowing interpreta-
tion of the enthalpy−entropy compensation effect empirically
observed in protein−ligand complexes. It includes a generalized
approach of the impact of point mutations: (i) In the −TΔS =
f(ΔH) entropy−enthalpy plot, the slope, a, is temperature-
dependent but independent of the protein, and may be
expressed as the ratio of the entropy and enthalpy components
of the Gibbs free energy of transfer of water or any other
substrate to a protein. (ii) The intercept, b, of the −TΔS =
f(ΔH) plot depends on the protein, while being related
exclusively to the conformational energy changes of the protein
upon complexation. (iii) Taking advantage of the compensation
effect, free energies of complexation in mutated enzymes may
be derived from docking studies in silico using a “training” set
provided by diverse homologous substrates in complex with the

wild type enzyme. (iv) Intrinsic activation energies for the
direct and reverse enzymatic reaction in complex are connected
to the free energies of complexation of reactants and products
through a simple BEP relationship. (v) The enzymatic kinetics
are explicitly described by the Langmuir−Hinshelwood model,
in a form that we show to be equivalent to the competitive
Michaelis−Menten model.
We have tested this general theoretical framework in the in

silico prediction of the residual activity of mutated human
fumarases with implications for the medical prognostic of
hereditary fumarase deficiency. Fumarase, or fumarate
hydratase (FH), is an important member of the Krebs cycle
catalytic cascade occurring inside the intramitochondrial space
of chemotrophic eukaryotes. Thanks to the recently released
high-resolution structure of the human wild type fumarase, we
have been able to compare this structure to the derived 3D
atomistic models involving the point mutations causing
patients' FH deficiency. Using specific biomolecular simulation
tools and the CHARMm forcefield, we have localized active
sites and evaluated free energies of transfer of the reactants and
product, water, fumarate, and L-malate by performing docking
studies. The latter were the input in our predictions of residual
activities, which we could finally compare with experimental
data from assays on patients cells (fibroblastes).
Our in silico results are in parity with the measured residual

fumarase activity, which in turn correlates well with the severity
of the fumarase hereditary deficiency syndrome. We conclude
that our calculations are, indeed, predictive. We anticipate that
the combination of the proposed computational approach,
which we propose to designate by the acronym R.E.A.-
L.I.S.M.,77 with a calibration against experimental Michaelis
constants for a set of homologous substrates and the wild type,
opens the way to a successful general strategy for understanding
predictively the impact of mutations on biological functions.
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